
Model Driven Engineering Using UML.

A Pragmatic Approach
Liviu Gabriel Cretu

#Business Information Systems Department,

Alexandru Ioan Cuza University of Iasi
Bd. Carol I, no 11, Iasi, Romania

Abstract— In the pursuit of systematic integration of Model
Driven Engineering (MDE) principles within the usual
software development process, one of the first questions
arising is the definition of the MDE process itself. This paper
introduces a pragmatic method to apply MDE using UML -
the de-facto modelling standard in software engineering. The
method presents a well define process based on meta-
modelling strategies and UML profiles. MDE shortcuts are
also introduced as a mean to facilitate gradual adoption and
integration of MDE techniques within the software
development process. An example is provided to validate and
illustrate this method.

Keywords— Model Driven Architecture, Model Driven
Engineering, Model Driven Development, meta-models, UML,
UML profiles.

I. INTRODUCTION

More than a a decade ago, Object Management Group
(OMG) proposed the Model Driven Architecture (MDA™)
[1] to deal with the separation of platform dependent and
independent aspects in information systems and the
transformation rules between them. Since then, MDA has
become a well established discipline both in practice and
research in information systems and software engineering.
However, since MDA is a proprietary trade mark specifying
the process and artifacts to be used, people cannot easily
modify and adapt to their needs while still using the brand
name. A similar situation is, for example, the use of
RESTful services and Web APIs where the first imposes
strict rules on creating HTTP-based services while the later
is just general enough to cover any kind of services
accessible via HTTP. As a consequence, today we have
multiple acronyms in use for model-driven paradigm:

 MDA – Model Driven Architecture – a process with
three translation steps: Computational Independent
Model (CIM) to Platform Independent Model (PIM)
to Platform Specific Model (PSM) and finally to the
generated code;

 MDE – Model Driven Engineering [2] – the usual
general term used instead of MDA. It proposes the
same approach of modelling multiple abstraction
layers and translation rules as MDA, only there is no
recommendation regarding the number and content of
these layers. MDE is being increasingly promoted as
the discipline to manage separation and combination
of various kinds of concerns in software or data
engineering.

 MDD – Model Driven Development – focuses more
on code generation instead of multiple modelling

layers. It is usually seen as a two steps process: from
model to code.

This paper will present an MDE method specifically
designed to seamlessly adopt the principles of model-driven
paradigm within the day-to-day software development
process using the de-facto standard in software modelling:
UML. However obvious it may sound that UML should be
used with MDE, the literature mainly offers domain-
specific model-driven examples or partial solutions to
specific issues. Actually, one cannot easily find a step-by-
step guide in MDA/MDE with UML. And this is the main
rationale of this paper. We will start with a short literature
review, then the MDE with UML method will be presented
along with a list of useful MDE shortcuts, and finally an
example will validate the proposed method.

II. MODEL-DRIVEN ENGINEERING PRACTICES

A quick literature review on the subject of MDA/MDE
reveals two main areas of research:

1) Domain-Specific Languages (DSL)

2) Meta-models and UML profiles

Most of the domain engineering methodology
emphasizes domain modelling as an important mechanism
for the development of software systems made of software
products (components) with similar architecture. Domain-
Specific Languages are specifically tailored to directly
represent the concepts of an application domain as
programming primitives. Domain-specific languages lift the
platform’s level, reduce the underlying APIs’ surface area,
and let knowledgeable end users live in their data without
complex software-centric models [8]. We can find DSLs
combined with MDA principles used in the development of
different types of software. For example, HyperDe is
presented in [4] as an environment that supports the design
and implementation of web-based applications combining
model-based development with domain specific languages
for flexible and rapid prototyping of applications. Moreover,
in [5] one may find an interesting approach where MDE is
applied to compose ”programs” written in different DSLs,
which will enable the use of the DSL approach to build
applications spanning different domains.

The second widely recognized approach is to put meta-
models at the very base of the MDA principles [6] and to
incorporate them in the software engineering process using
manual or automated model-to-model transformers. Meta-
models are intended to define a set of related concepts and
each meta-model defines a language for describing a

Liviu Gabriel Cretu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 309 - 314

www.ijcsit.com 309

specific domain of interest. The associated transformers use
this language to generate new models from input models by
interpreting the concepts in the meta-model.

Since UML is the standard in software engineerign, the
first question is how can one define meta-models with this
language, associate them with domain models and apply
MDE transformations. In UML, a model element may
specify a relationship to the meta-model elements by means
of stereotypes and tagged-values. These are modelled using
UML profiles. Profiles can play a particularly important
role in describing the platform model and the
transformation rules between models according to MDE
principles. XMI [7] may then be used to transfer meta-
models from one project to another, no matter the
modelling tool, as long as it is UML based.

Regarding the usage of UML with model-driven
paradigm , there are some works showing the natural
relationship between UML profiles and the meta-modelling
phase in MDA [9, 10] while a large number of papers are
proposing domain specific profiles such as for critical
infrastructures [11], distributed service models[12],
embedded systems [13], web services [14], semantic web
services [15] etc. An important number of papers are also
dedicated to special languages needed to define and execute
MDA Transformers such as in [15].

III. A PRAGMATIC METHOD FOR MDE USING UML

MDE can leverage the software development process
only if the latter does follow a set of well-defined principles:

 Reference architecture - the system has a clear
architecture which both is well documented and a
development framework has been built around it.
This will provide the meta-model for the new systems.
In other words, the development team will never have
to raise any questions of the kind: “where should I
put this piece of code?”

 Typed Use Cases - development tasks are usually
organized around Use Cases and if the Use Case is
associated with a meta-model (also known as pattern)
then we call it a Typed Use Case (TUC). Typed Use
Cases lead to typed development tasks for which the
domain model abstractions as well as the software
pattern to be implemented are known. In these cases
the implementation can be estimated with very high
level of accuracy, both in time and quality of the
work.

 Just-enough automation – although MDE does not
necessary mean any automation, this is one of the
usual goals. In such case the development process
automation will not have to generate 100% functional
code. The trick is to automate the routine
development work and to let the designers and
developers concentrate on specific details or some
behavioural exotic algorithms. The automation has to
focus on two main areas: productivity and bug-free
product. For example, generating the main interfaces
as well as concrete class structures with inheritance to
some abstract behaviour may lead to a productivity
boost for junior developers as they will easily add the
specific behaviour only in the right place. Not to

mention they will also quickly learn the structure of
the code for that type of Use Case.

Once we have a reference architecture and TUCs we can
apply MDE principles with UML, and even automate the
development process, taking into account the pragmatic
goal of just-enough automation. UML offers two extension
mechanisms very useful for MDE: stereotypes and tagged
values. Stereotypes are used to associate UML artifacts
with your own meta-model artifacts. Thus, using
stereotypes one can further classify Classes, Use Cases,
Relationships, and so on in order to bridge the gap between
UML meta-model and the target system’s meta-model.
Tagged values are very useful to specifically define custom
association types or other meta-data which have a meaning
for an external processor. Both stereotypes and tagged
values can be packaged into profiles to create the software
development meta-model based on the reference
architecture.

The UML-based MDE process is illustrated in figure 1.
We still use the MDA artifacts (CIM, PIM, PSM) for
convenience. However, since it is an iterative process, there
is no restriction on the number of modelling layers.

Fig. 1 The MDE process using UML

In short, the UML-based MDE process starts with a
meta-model for the system to be developed. This meta-
model is derived from the reference architecture of the
system. Then, a UML profile (stereotypes and tags) is
created together with a set of rules to guide the creation of
CIMs and the subsequent transformations. Finally, the
stereotypes and tagged values are used to create the
individual CIMs (or domain CIMs), models are validated

Liviu Gabriel Cretu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 309 - 314

www.ijcsit.com 310

and the transformations are applied (manually or
automated).

A. The UML-based MDE process

There are 4 phases of this process:
Phase 1 – create the meta-model based on the reference

architecture. The meta-model has three parts: a) an UML
profile whose elements will be the labels of the software
artifacts to be obtained from each UML element annotated
with that stereotype; b) profile usage rules to guide the
association of stereotypes and tagged-values to individual
CIMs; c) transformation rules to guide the transformation of
one model into another. For example, a Use Case may have
a kind of relationship to the domain classes in order to
specify the input/output parameters. Then, the
transformation rules specifically state how the Use Case
will be transformed into a Service (PIM), then into a Web
Service, RESTful Service or EJB Service (PSM). If MDE
automation is the goal, then a collection of Transformers is
also created in this phase.

Phase 2 - the business analyst will create the domain
analysis CIMs using standard UML elements annotated
with the meta-model elements defined in Phase 1. The
number and the types of diagrams to be used in this phase
will be derived from the reference architecture of the
system to be developed. The only two important things to
note are the followings: UML elements have to be
annotated with meta-model stereotypes and the
relationships needed by the MDE process have to be
properly defined (based on the same meta-model elements)
in order to generate the required modelling or code artifacts.
In this phase the developers may also be involved to enrich
the models for the MDE Transformers. A set of MDE
shortcuts, as defined bellow, may be used.

Phase 3 – transformation rules are applied (manually or
automated) to generate PIMs and then PSMs and finally the
code. Even if the process is automated, specific manual
adjustments may be needed before each transformation.
Also, model validators should be defined to check the meta-
model semantics associated with the domain CIM.

Phase 4 consists in the analysis of the results, progress
assessment, and refinements with the final goal to obtain a
higher degree of control and predictability of the
development process. Among many tools, CMMI [18]
proposes one of the most trusted methods to measure this
kind of progress.

B. MDE shortcuts

Code generation implies working with highly formalized
models, thus leaving no place for ambiguity. However our
experience shows that strict MDA compliance may be quite
undesirable in practice. Not only that the distinction
between PIM and PSM is vague for most of the developers
(mainly because they are using the same technologies and
platforms for a long time) but also the time spent to put the
Transformers stack in synchronization one with another
may simply not be accepted by the management team.

To address these kinds of pragmatic issues, the MDE
method proposed in this paper takes into consideration what
we have called MDE Shortcuts. An MDE Shortcut may be
defined as a systematic usage of links between elements
appearing in different models for different viewpoints (e.g.

a CIM element may have a link to some PIM element).
There are three valid such shortcuts which may be taken
into consideration:

1) A CIM element may have a link to PIM or PSM
elements (even if the later may have been obtained by
means of transformations and the link is added afterwards,
just before generating the next model). This shortcut is
obviously needed when one needs to reuse some existing
components or services or add new modules to an existing
system. The natural way to go is to reverse engineer the
code to PSM. If one will have no time to define the required
reverse-transformers till the CIM level, one will surely still
need to use the existing classes in order to create the new
extension of the system. Another scenario for this shortcut
comes from the natural order of steps in software
development: having the concept of a Service clarified, the
first step will be to implement the Service then the Client
(usually the user interface) that will connect to the Service
using the provided interface. When one describes the
Client's behaviour in CIM, there are two options: a) to link
somehow the Client model elements (CIM) to the generated
or re-engineered Service interface in PSM, or b) to add
tagged-values specifying the concrete interfaces to be used
later in the transformation process. In practice, we have
found that the first approach seems more appropriate as it
provides a unified way for models transformations (first
iteration generates the Service models and code, then the
second iteration comes back to Client CIM and adds the
links to the new Services).

2) A PIM element may include PSM concepts – since
CIM describes the business logic from the business
viewpoint, to be able to generate some code one will have
to enrich the model with enough technical information
needed by transformers. This process is very much like
writing code: no room for ambiguity. As a consequence, the
CIM usually needs to incorporate enough information for
direct code generation. Moving this information from one
model to another may become quite a risky and error prone
job. As such, the PSM operation implementation can be
generated from the beginning (CIM-to-PIM Transformer)
and attached to the corresponding class until the final code
generation (usually as a tagged value or a scenario
implementation UML element).

3) Developers may interfere with the MDE multiple
transformation steps in order to add necessary features to
PIM/PSM models, before code generation. This way,
specific adjustments that have not yet been captured by
Transformers will bring the opportunity to obtain 100%
executable code.

By using MDE Shortcuts the number of Transformers
(and consequently the eventual logical mappings errors)
may decrease dramatically, while still keeping enough
models to coherently describe the software from all the
required perspectives. Following this pragmatic MDE
approach proved to bring the promised productivity boost in
practice.

IV. MDE WITH UML APPLIED

In order to validate the proposed method we take the
example of a business application which needs to

Liviu Gabriel Cretu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 309 - 314

www.ijcsit.com 311

implement various business processes. We will name it the
Alpha system and we will take a simple example of a
business process shown in fig 2. It is an over-simplified
order management process where each morning a service
gathers all the orders received by means of different
channels (e-mail, web site, other systems), the orders then
have to be approved by the manager using some web
interface and finally the missing items have to be ordered
further from the suppliers. To model the Alpha system we
use both BPMN and UML since the modelling tool
(Enterprise Architect from Sparx Systems) offers a flexible
platform and a powerful transformation language to work
with both notations. However, UML classical activity
diagrams may be also an option with satisfactory results.

 Business Process SimpifiedOrderManagement

Search All New
Orders

each morning

Create Orders to
Suppliers

Approve New
Orders

EndEvent1

Fig. 2 Simplified Order Process using BPMN.

A. The Reference Architecture

According to the process described earlier, we define the
reference architecture for the Alpha system (fig 3) as a
message based system involving business rules (BR) and
business process management (BPM) engines, and an
enterprise service bus (ESB).

cmp Components

BusinessRulesEngine

Service

BPESB Model

ESB

BusinessRulesEngine

Service

BP

ESB

Client

ESB

ESB

Serv ice Model
Service

ESB

ESB

Extended Domain
Model

ESB

ESB

Business Process
Model

BusinessProcessEngine

ESB

Business Rules
Model

BusinessRulesEngine

«use»

«use»

«use»

Fig. 3 The reference architecture for the Alfa system

Extended Domain Model – models the internal structure
and behaviour of one service. It includes:

1) Domain Model – this is one of most used pattern
from Martin Fowler’s [17] collection of patterns for
enterprise system architectures.

2) Message Model – defines the messages the service
may respond to. Each Message corresponds to a business
Use Case or Use Case Scenario encapsulating the input data
(parameters), necessary for the service execution,.

Service Model – includes those classes that expose the
functionality to the world. We call these Domain Services
to distinguish them from other services (ESB, business
rules, BPM). There is only one public method a Service
interface exposes: handleMessage
(message:Message). Thus, we call such a service a
MessageHanlder. Routing one message to the

corresponding processing Service will be the ESB's
responsibility.

ESB Model – includes components, language and
runtime to implement a messaging system, namely to create
the configuration of channels, endpoints, routing and
transformations to achieve ad-hoc services orchestrations.

Business Process Model – provide components, language
and runtime to implement a business process management
system.

Business Rules Model – provides components, language
and runtime to declaratively define business rules, to
associate them as pre-conditions or post-conditions for
certain Messages and to execute them against that Message
instances when they occur. By separating business rules in a
different model, this architecture creates the opportunity for
dynamically change the rule set to be applied to one
Message instance, depending on the environmental
variables accessible from execution context.

Client Model – represents the outside world of the
Extended Domain Model. Usually the client refers to the
graphical user interface of a system (the presentation layer)
or another application/service. Clients execute system’s
behaviour by sending Messages to the ESB. Thus the client
will become dependent only of the Domain Model not the
Service Model.

B. The MDE Process

We apply the MDE process defined in the III.A section
above for this reference architecture.

Phase 1 - the business analyst will create a CIM version
agreed by the customer. Three models will be created in
this phase: the Business Process Model, the Domain Model
and the Business Rules Model. The Message Model and the
Service Model will be generated later on. According to the
reference architecture we may create an UML profile as
depicted in figure 4. For demonstration purposes, the profile
has been simplified to the minimum number of elements
needed here. To note: there are two specialized types of
<<Service>>UseCases, namely <<Search>> and
<<CRUD>> (Create, Read, Update, Delete) with the
corresponding message handlers (according to the reference
architecture). Dependencies of types Input and Output will
be used to specify the input/output parameters for some
UseCases (e.g. <<Search>> and <<CRUD>>.

 class MM

«metaclass»
Class

+ isActive :Boolean

«metacla...
UseCase

Search

Message

Input Output

PersistentEntity

Service

«metaclass»
Dependency

+ direction :Direction = Source -> Desti...

CRUD

Task

Rule

MessageHandler

SearchHandler CRUDHandler

«Extends»

«Extends»

«Extends»«Extends»

«Extends»

«extends»

«extends»

«extends»

Fig. 4 The UML profile for the reference architecture .

Liviu Gabriel Cretu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 309 - 314

www.ijcsit.com 312

Table 1 shows some of the most important
transformation rules we have defined.

TABLE 1.
TRANSFORMATION RULES FOR THE ALPHA SYSTEM

 Transformations
CIM CIM

1 BPMN Service Activity <<Service>> UseCase

2 BPMN Human Task <<Task>> UseCase

 CIM PIM

 <<Service>> UseCase <<Message>> Class
<<MessageHanlder>>Class
implementing the Service
interface

 <<Search>>UseCase <<Message>> Class
<<SearchHandler>>Class

 <<CRUD>>UseCase <<Message>> Class
<<CRUDHanlder>>Class

 <<PersistentEntity>>Class <<PersistentEntity>>Class

 PIM <<JavaEE> PSM

 <<Message>>Class <<Message>Class

 <<MessageHandler>>Class <<EJB>>Class
implementing the Service
interface from reference
architecture

 <<PersistentEntity>>Class <<PersistentEntity>>Class
with the Java Persistence
API annotations

Phase 2 – the business analyst develops the CIM using

the right stereotypes (figure 5). As seen in Table 1, we have
one CIM-to-CIM transformation: from BPMN process to
UseCase diagram. Once the UseCases are generated, the
business analyst may change the <<Service>> stereotype to
one of the specialized UseCase types: <<Search>> or
<<CRUD>>. This is the case here with the UseCases
derived from “Search All New Orders” and “Create Orders
to Suppliers” BPMN activities (figure 2). Also in this phase
the domain model is created and the links between some
UseCases and Classes in order to specify the input and
output for some of the UseCases according to the meta-
model specification.

 class CIM-Orders

Operator

«Task»
Approve New

Orders

«PersistenceEntity»
Product

+ code :char
+ name :char

«CRUD»
Create Orders to

Suppliers

«Search»
Search All New

Orders

«PersistenceEnti...
Order

+ inOut :char

«PersistenceEntity»
OrderItems

+ price :double

«PersistenceEnt...
Partner

«Output»

0..*

1..*

0..*
1 «Input»

Fig. 5 CIM for Order Process using stereotypes from Alpha
meta-model.

Phase 3 consists in executing the transformations and
performing the manual adjustments if needed. Based on the

rules defined in Table 1, a Transformer may be crated to
automate the transformation activity. An example of the
result may be found in figure 6. As for the manual
adjustments, we apply the MDE shortcuts described earlier.
In this example, one manual adjustment was needed: since
the <<Input>> and <<Output>> stereotypes are based on
Dependency UML meta-class, there is no option to specify
the multiplicity of the relationship. Thus, a manual
intervention is needed to correct the attribute type of the
generated message type. In the specific case of Create
Orders to Suppliers, the input may refer to multiple
received orders and the output may be a collection of orders
to different suppliers.

 class Logic-PIM-Ofer te

«CRUDHandler»
CreateOrderstoSuppliersHandler

+ handleMessage ︵Message ︶ :Object
- execute ︵CreateOrderstoSuppliersMessage ︶ :void

CreateOrderstoSuppliersMessage

- «Collection» Order :Order

«interface»
Service

+ handleMessage ︵Message ︶ :Object

«interfac...
Message

«use»

«use»

Fig. 6 PIM for Order Process generated from CIM (partial).

V. CONCLUSIONS

This paper introduced a well defined method for MDE
using UML. The short literature review revealed there is
strong orientation, both in research and practice, towards
model-driven paradigm. The argument for this work has
been the acknowledgement that there is still a lack of such
complete guidelines to show how to adopt MDE principles
in day-to-day software development business.

We have shown that mastering the relationship between
software architecture and UML profiles leads to domain-
agnostic MDE process. This is the key aspect which
positions this paper as a distinct approach in literature since
we have seen a large number of works focusing on domain-
specific MDE solutions. The so-called MDE shortcuts has
been also presented as valid actions to reduce the number
and complexity of MDE Transformers while pushing the
level of productivity even further. An example has been
provided to better illustrate the process and to validate the
method.

REFERENCES
[1] OMG. MDA Guide version 1.0.1. OMG document omg/2003-06-01,

2003
[2] J. Bézivin, “sNets: A First Generation Model Engineering Platform”,

in: Lecture Notes in Computer Science, Berlin, Germany: Springer,
2005 vol. 3844, pp. 169—181.

[3] O. Pastor, S. España, J. I. Panach and Nathalie Aquino, “Model-
Driven Development”, Informatik-Spektrum, Volume 31, Issue 5,
pp. 394-407, October 2008.

[4] D. A. Nunes and D. Schwabe, "Rapid prototyping of web
applications combining domain specific languages and model
driven design," in Proceedings of the 6th international conference
on Web engineering, 2006, ACM, New York, USA, pp. 153-160.

[5] J. Estublier, G. Vega, A. D. Ionita, "Composing Domain-Specific
Languages for Wide-Scope Software Engineering Applications",
Model Driven Engineering Languages and Systems, ser. Lecture
Notes in Computer Science, Berlin, Germany: Springer 2005, vol
3713, pp. 69-83.

Liviu Gabriel Cretu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 309 - 314

www.ijcsit.com 313

[6] J. Bézivin, "In Search of a Basic Principle for Model Driven
Engineering", European Journal for the Informatics Professional,
Vol. V, No. 2, April 2004.

[7] XML Model Interchange (XMI), Object Management Group
standard, 1998, http://www.omg.org/docs/ad/98-10-05.pdf

[8] T. Dave, "MDA: Revenge of the Modelers or UML Utopia?",
Software, IEEE, Vol 21, no. 3 15-17, 2004

[9] F.F. Lidia and A. Vallecillo-Moreno, "An introduction to UML
profiles.", in UML and Model Engineering, Vol 2, 2004.

[10] O. Rahma and B. Coulette, "Applying Security Patterns for
Component Based Applications Using UML Profile." in IEEE 15th
International Conference on Computational Science and
Engineering (CSE), 2012, IEEE, pp. 186-193.

[11] B. Ebrahim and A. A. Ghorbani, "Towards an MDA-oriented UML
profile for critical infrastructure modeling." In Proceedings of the
2006 International Conference on Privacy, Security and Trust:
Bridge the Gap Between PST Technologies and Business Services,
2006, ACM, p. 66..

[12] S. Raul, F. Fondement, and A. Strohmeier, "Towards an MDA-
oriented UML profile for distribution." In Proceedings of EDOC
2004, Eighth IEEE International Conference on Enterprise
Distributed Object Computing, 2004, pp. 227-239.

[13] S., I. Wisniewski, L. T. Wiedermann Agner, P. C. Stadzisz, and J.
M. Simão, "Modeling of embedded software on MDA platform
models." Journal of Computer Science & Technology Vol 12, 2012.

[14] S., Hassina, I. Bouacha, and M. S. Benselim, "Development of
context–aware web services using the MDA approach." In
International Journal of Web Science vol 1, no. 3, pp. 224-241,
2012

[15] A. B. Djamel and M. Malki, "Development of semantic web
services: model driven approach." In Proceedings of the 8th
international conference on New technologies in distributed systems.
ACM, 2008.

[16] M. B. Kuznetsov, “UML model transformation and its application
to MDA technology”, Programming and Computer Software, Berlin,
Germany: Springer 2007, Volume 33, Issue 1, pp 44-53.

[17] M. Fowler, Patterns of Enterprise Application Architecture,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2002.

[18] S. Meena and R. G. Vishwakarma, "CMMI based software metrics
to evaluate OOAD." Proceedings of the Second International
Conference on Computational Science, Engineering and
Information Technology. ACM, 2012.

Liviu Gabriel Cretu / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 309 - 314

www.ijcsit.com 314

